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2 Answers to Exercises 

Chapter 1 

1. (a) 0⋅ =i j , 0⋅ =j k , and 0⋅ =k i . 
 (b) × =i j k, × = −j i k , × =j k i, × = −k j i, × =k i j, and × = −i k j. 
 (c) [ ], , 1=i j k . 

2. ( ) ( )2 2 2 2a b+ = + ⋅ + = + + ⋅a b a b a b a b. For the dot product, we can say 
cos θ⋅ = ≤a b a b a b , which means 2 2 2 2a b+ ≤ + +a b a b . The 

right side of this inequality is ( ) 2+a b , and taking square roots of both sides 
gives us the result. 

3. Similar to previous exercise. 

 ( ) 22 2 2 2 22 2a b a b− = + − ⋅ ≤ + − = −a b a b a b a b . 

4. Expanding each term with the vector triple product identity, we have 

 
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

× × + × × + × ×

= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅

a b c b c a c a b
b a c c a b c b a a b c a c b b c a , 

 and every term of the result cancels. 

5. Note that ( )× × = × ×b a b b a b . Applying the vector triple product identity, we 
have ( )2b× × = − ⋅b a b a a b b. Dividing by 2b  gives us 

 2 2b b ⊥
× × ⋅

= − = − =b b
b a b a ba b a a a



. 

6. 

2 2

2 2
2

2 2

1
y z x y x z

x y x z y z

x z y z x y

b b b b b b
b b b b b b

b
b b b b b b

+ − − 
 = − + − 
 − − + 

R . 

7. Expanding ( )⊥ ×a bv , we have 

 ( )
( )

( )
( )2⊥ ×

⋅ ×
= − ×

×
a b

v a bv v a b
a b

. 

 Since ( ) 0× ⋅ =a b a , the entire last term disappears when we calculate 
( )( )⊥ × aa bv



, and we are left with 
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 ( )( ) 2a⊥ ×
⋅

= =a aa b
v av a v

 

. 

8. We want to show that ( )[ ] ( )[ ]ij ij=AB C A BC  for all 0 i n≤ <  and 0 j q≤ < . 
Starting with the left side, we have 

 

( )[ ] ( )

( )

( )[ ]

1

0
1 1

0 0

1 1

0 0

1

0

.

p

ik kjij
k
p m

il lk kj
k l

m p

il lk kj
l k

m

il lj
l

ij

C

A B C

A B C

A

−

=

− −

= =

− −

= =

−

=

=

  
=   

  
 

=  
 

=

=

∑

∑ ∑

∑ ∑

∑

AB C AB

BC

A BC  

9. For a 2 2×  matrix, it’s clear that the determinant is just the product of the two 
diagonal entries. To prove the general case by induction, assume that for any 
k n< , the determinant of a k k×  matrix is equal to the product of its diagonal 
entries. If we calculate the determinant of an n n×  matrix using expansion by 
minors along the last column, then the only nonzero term corresponds to the 
( )1, 1n n− −  entry. This is multiplied by the determinant of the upper-left 
( ) ( )1 1n n− × −  portion of the matrix, which is known to be the product of its 
diagonal entries. Since we are now simply multiplying by one more diagonal 
entry, we have proven the general case. 

10. In the product tA, every entry of A is multiplied by t. This means that every 
factor in the Leibniz formula for the determinant is multiplied by t when A is 
replaced by tA. Since every term has n factors, the full determinant is multi-
plied by a factor of nt . 

11. A matrix 
a b
c d
 
  

 is singular when the determinant ad bc−  is zero, so we need 

to find all cases for which ad bc=  with a, b, c, and d being either 0 or 1. Of the 
16 possible 2 2×  matrices, the following 10 are singular. 
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0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1
1 1 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 0 1 1

         
                  
         
                  

 

12. Multiply both sides of the equation =LM I on the right by R. Then ,=LMR R
but =MR I, so =L R. 

13. The following matrix is the inverse of the elementary matrix E that multiplies 
row r by t. 

 1

1 0 0

0 1 0 row 

0 0 1

t r−

 
 
 

= ← 
 
 
  

E

 

   

 

   

 

 

 The following matrix is the inverse of the elementary matrix E that exchanges 
rows r and s. (In this case, E is its own inverse.) 

 1

1 0 0 0

0 0 1 0  row 

0 1 0 0  row 

0 0 0 1

r

s

−

 
 
 

← 
 =  
  ←
 
 
  

E

  

    

  

    

  

    

  

 

 The following matrix is the inverse of the elementary matrix E that adds row 
s multiplied by the scalar value t to row r. 
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 1

column 

1 0 0 0

0 1 0 row 

0 0 1 0 row 

0 0 0 1

s

t r

s

−

↓

 
 
 

− ← 
 =  
  ←
 
 
  

E

  

    

  

    

  

    

  

 

14. When the permutation τ  is applied, the Leibniz formula becomes 

 ( ) ( ) ( )( )

1

,
0

det sgn
n

n

k τ σ k
σ S k

τσ M
−

∈ =

 
=  

 
∑ ∏M . 

 The sign of the permutation τ  is 1−  because it is a single transposition. Since 
( ) ( ) ( )sgn sgn sgnτσ τ σ= , every term in the summation is negated. 

15. Suppose that M is an n n×  matrix and that row r of M is all zeros. Let N be 
any n n×  matrix. The ( ),r r  entry of the product MN is given by 

 ( )
1

0

n

rk krrr
k
M N

−

=

=∑MN , 

 but each 0rkM = , so it’s impossible to produce anything other than zero. Since 
a one is needed in the ( ),r r  entry of the identity matrix, M cannot be invertible. 

16. First, assume that M is invertible. Then ( ) ( )T 1 T 1 T T− −= = =I I MM M M , and 
this shows that ( )1 T−M  is the inverse of TM . Second, assume that TM  is in-
vertible. Then ( ) ( )( )T T 1 T T 1 T T− −= = =   I I M M M M , and this shows that 
( )( )T 1 T−M  is the inverse of M. Since we know that ( )1 T−M  is the inverse of 

TM  from the first part, and we know that ( )T 1−M  is the inverse of TM  from 
the second part, it must be the case that ( ) ( )T 1 1 T− −=M M . 

17. The ( ),i j  entry of the product ( )adj M M is given by 

 ( )( ) ( )
1

0
adj

n

ij ki kj
k
C M

−

=

=∑M M M . 
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 When i j= , the summation is equal to the determinant of M. When i j≠ , the 
summation is equal to the determinant of M if it were modified so that the 
entries in column j were replaced by the entries in column i. This matrix has 
two identical columns and must therefore have a determinant of zero. Thus, 
the entries on the main diagonal of ( )adj M M are all ( )det M , and all other 
entries are zero. A similar argument can be applied to ( )adjM M . 

18. Multiplying the first two matrices gives us 

 
( )T T TT 11 1

nn n + ⊗+ ⊗     
=      + ⊗ +     

I a b aI 0 I a b a
b b a b b ab 0

. 

 Now multiplying by the third matrix produces 

 
( )T T T T1 1 1

n n n+ ⊗     
=     + ⊗ + − + ⋅    

I a b a I 0 I a
b b a b b a b 0 a b

, 

 where we have used the facts that T = ⊗ab a b and T = ⋅b a a b. The determi-
nants of both sides of the original matrix identity are easily calculated because 
each matrix contains a row or column that is all zeros except for the entry in 
the lower-right corner. The determinant of the left side is the product of the 
determinants of the three matrices, and the determinants of the first and third 
matrices are just one, so the determinant of the whole left side is simply the 
determinant of the n n×  matrix n + ⊗I a b. The determinant of the right side is 
equal to ( ) ( )1 det n+ ⋅a b I . Therefore, ( )det 1n + ⊗ = + ⋅I a b a b. 

19. The diagonal entries of 1−M M are given by 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
00

1
11

1
22

1
33

y x

x y

w z

z w

−

−

−

−

× + ⋅ − ⋅
=

⋅ + ⋅
× − ⋅ + ⋅

=
⋅ + ⋅

× + ⋅ − ⋅
=

⋅ + ⋅
× − ⋅ + ⋅

=
⋅ + ⋅

b v t a b tM M
s v t u

v a t b a tM M
s v t u

d u s c d sM M
s v t u

u c s d c sM M
s v t u

 

 A little regrouping in the numerators gives us 
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( ) [ ] ( )

( ) [ ] ( )

( ) [ ] ( )

( ) [ ] ( )

1
00

1
11

1
22

1
33

, ,

, ,

, ,

, ,

y x

y x

w z

w z

−

−

−

−

+ ⋅ −
=

⋅ + ⋅
+ ⋅ −

=
⋅ + ⋅
+ ⋅ −

=
⋅ + ⋅
+ ⋅ −

=
⋅ + ⋅

b v a t a bM M
s v t u

v a b t a bM M
s v t u

d u c s c dM M
s v t u

u c d s c dM M
s v t u

. 

 The scalar triple products can each be permuted to give either ( )× ⋅a b c or 
( )× ⋅c d u, and then it is clear that the numerators and denominators are equal, 
so the diagonal entries are all ones. 

 Off the diagonal, we choose the ( )1, 0  entry, which is calculated as 

 ( ) ( ) ( )1
10

x x− × − ⋅ + ⋅
=

⋅ + ⋅
v a t a a tM M

s v t u
. 

 The term ( )× ⋅v a a is zero, and the remaining two terms in the numerator can-
cel, producing a zero for the ( )1, 0  entry. 

20. The x component of the left side is 

 ( ) ( ) ( )[ ]y z z y x z x x z y x y y x z xa b a b c a b a b c a b a b c d− + − + − , 

 and the x component of the right side is 

 
( ) ( ) ( ) ( )

( ) ( ) .
x x y y z z y z z y x x y y z z y z z y

x x y y z z y z z y

a d a d a d b c b c b d b d b d c a c a
c d c d c d a b a b
+ + − + + + −

+ + + −  

 Collecting the terms on the right side containing the factor xd  gives us 

 ( ) ( ) ( )[ ]x y z z y x y z z y x y z z y xa b c b c b c a c a c a b a b d− + − + − , 

 and each of these terms matches a term from the left side. We just need to show 
that the remaining terms on the right side sum to zero. Those terms are 

 
( ) ( ) ( ) ( )

( ) ( ) ,
y y z z y z z y y y z z y z z y

y y z z y z z y

a d a d b c b c b d b d c a c a
c d c d a b a b
+ − + + −

+ + −  
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 and multiplying everything out produces 

 
y y z y y z y y z y z z z z y z z y y y y y z y

z z y z y z z z y z y y z y y y y z z z z y z z

a b c d a b c d a b c d a b c d a b c d a b c d
a b c d a b c d a b c d a b c d a b c d a b c d

− + − + −

+ − + − + − . 

 Every term cancels, so the x components of both sides are equal. 

Chapter 2 

1. A matrix M is an involution if 2 =M I. The determinant of M must therefore 
square to one, which leaves only two possibilities, 1+  or 1− . 

2. Since A and B for orthogonal, we know 1 T− =A A  and 1 T− =B B . We then have 

 ( ) ( )1 1 1 T T T− − −= = =AB B A B A AB . 

 Therefore, AB is orthogonal. 

3. Let M be a symmetric matrix that is also an involution. Then 2 =M I. Since M 
is symmetric, T=M M , so we can write T =MM I, and this shows that M is 
orthogonal. Now suppose that M is an orthogonal matrix that is also an invo-
lution. Since M is orthogonal, 1 T− =M M , and since M is an involution, 

1− =M M. Thus, T =M M, and this shows that M is symmetric. 

4. 

2

2

2

1 0 0
0 1 0
0 0 1

a
b

c

 
 =  
  

N . 

5. 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

2

2

1 1 1
1 1 1
1 1 1

x x y x z

x y y y z

x z y z z

s a s s a a s a a
s a a s a s s a a
s a a s a a s a s

− + − − 
 − − + − 
 − − − + 

. 

6. (a) ( )skew

1 0 tan
, , 0 1 0

0 0 1

θ
θ

 
 =  
  

M i k . 
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 (b) ( )skew

1 0 0
, , 0 1 tan

0 0 1
θ θ

 
 =  
  

M j k . 

 (c) ( )skew

1 0 0
, , tan 1 0

0 0 1
θ θ

 
 =  
  

M j i . 

7. The fourth row of HG  is given by 30 0 31 1 32 2 33 3H H H H+ + +G G G G , where 
iG  represents row i of G. Since 30 31 32 0H H H= = =  and 33 1H = , the fourth 

row of the product HG  is equal to the fourth row of G, which is [ ]0 0 0 1 . 

8. 
1
− 

  

M M
0

 
. 

9. Let 1 1 1s= +q v  and 2 2 2s= +q v . Then 

 ( ) ( )2 22
1 2 1 2 1 2 2 1 1 2 1 2s s s s= × + + + − ⋅q q v v v v v v , 

 and this expands to 

 ( ) ( )2 22 2 2 2 2 2 2
1 2 1 2 1 2 2 1 1 2 1 2s v s v s s= × + + + + ⋅q q v v v v . 

 After applying Lagrange’s identity to the cross product and dot product, this 
becomes 

 ( ) ( )2 2 22 2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 2 1 1 2 1 1 2 2 1 2v v s v s v s s v s v s= + + + = + + =q q q q . 

 Taking square roots of both sides shows that the magnitude of the product is 
equal to the product of the magnitudes. 

10. ( )
2

f
∗+

=
q qq  and ( )

2
g

∗−
=

q qq . 

11. The magnitude of q is given by 

 
2 2

2 2sin cos
2 2
θ θa   = +   

   
q . 
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 We know that 2 1a = , so we are left with the sum of a squared sine and squared 
cosine of the same angle, which is always one. 

12. The quaternions i=q , j=q , and k=q  perform 180-degree rotations about the 
x, y, and z axes, respectively. 

13. For the x axis, 2 2
2 2i= +q . For the y axis, 2 2

2 2j= +q . For the z axis, 
2 2

2 2k= +q . 

14. It’s required that ( )cos 2c θ= . Applying the relationship 1 2cos θ = ⋅v v  and the 
trigonometric identity ( ) ( )2cos 2 1 cos 2θ θ= + , we find that 

 1 21
2

c + ⋅
=

v v . 

 We must also have ( ) ( )1 2sin 2 sins θ θ= ×a v v . This can be simplified using 
the identity ( ) ( )sin 2 sin 2 cos 2θ θ θ= , and the quaternion can be written as 

 ( ) ( )1 21 2c c= × +q v v . 

Chapter 3 

1. 3 

2. The closest point is given by ( )+ − v   , which corresponds to the parame-

ter ( )
2t

v
− ⋅

=
v  . 

3. The function f expands to ( ) ( ) 2
1 2 2 2 2 1 1 1,f t t t t= + − −v v  , and its partial 

derivatives are 

 

( )

( )

2
1 1 2 1 1 1 2 1 2

1

2
2 2 1 2 2 2 1 1 2

2

2

2

f t v t
t
f t v t
t

∂
= ⋅ − ⋅ + − ⋅

∂
∂

= ⋅ − ⋅ + − ⋅
∂

v v v v

v v v v

 

  . 

 Simultaneously setting these to zero (and dropping the factors of two) gives us 
the system 

 ( )
( )

2
2 1 11 1 2 1

2
1 2 21 2 2 2

v t
v t

− ⋅− ⋅     
=      − ⋅− ⋅     

vv v
vv v

 
 

. 
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 When we negate the bottom row and solve for 1t  and 2t , the result is equivalent 
to Equation (3.24). 

4. The line where the two planes [ ]1 1| dn  and [ ]2 2| dn  intersect is given by 
{ }1 2 1 2 2 1| d d× −n n n n , and the homogeneous point closest to the origin on this 
line is given by 

 ( )( )2
1 2 2 1d d v× −v n n , 

 where 1 2= ×v n n . Distributing the cross product and dividing by the w coor-
dinate yields Equation (3.42). 

5. ′ =n n and d d′ = − ⋅n t. 

6. ′ =v v and ′ = + ×m m t v. 

7. By formula F in Table 3.1, the line { }|v m  intersects the plane [ ]| 0v  at the 
homogeneous point ( )2| v× −m v , which is equivalent to ( )2| v×v m . 

8. 1 2= ×n v v , and either 1 2d = ⋅v m  or 2 1d = − ⋅v m . 

9. ( )2
2 1v= −n m m  and [ ]1 2, ,d = − v m m . 

10. ( )2 1
2d

v
× −

=
v m m . 

11. ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]2
0 0t t× ⋅ − + × − × ⋅ − + − ⋅ ×v v v v v v              

( ) ( ) ( ) ( )0 0 0 0 0+ × ⋅ − + − ⋅ × =        . 

12. Set [ ]2 2|= × − ⋅f v u u m . This intersects the line { }1 1|v m  at the homogeneous 
point ( ) ( ) ( ) ( )( )1 2 2 1 2 1| |w = × × − ⋅ − × ⋅p m v u u m v v u v . The w coordinate 
is equivalent to ( ) 2 2 2

1 2 1 2v v⋅ −v v . The vector triple product and the identity 
given by Exercise 20 in Chapter 1 can be applied to produce the following 
more symmetric formula for p: 

 
( ) ( ) ( ) ( )
( ) ( )

2 2
1 2 1 2 2 1 1 2 2 2 1 1

2 1 1 2

v v= ⋅ × + × − × − ×

− ⋅ ×

p v v v m v m v m v m
m v v v
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Chapter 4 

1. The area of region A is ( ) ( )x x y ya b b a− − , the area of region B is 
( )1

2 x y yb b a− , and the area of region C is ( )1
2 y x xa a b− . The total area of the 

parallelogram spanned by a and b is 2 2A B C+ + , which simplifies to the quan-
tity .x y y xa b a b−  

2. Assuming the products are not zero, ∧ ≠ ∧A B A B when n is even and 
( ) ( )gr gr+A B  is odd. 

3. Suppose that A and B are both ( )1n − -blades. The set of basis vectors compos-
ing A and B can differ by at most one element because it would otherwise 
require that we have more than n basis vectors. Therefore, we can write 

1= ∧A C v  and 2= ∧B C v , where C is an ( )2n − -blade representing the com-
mon factor between A and B, and 1v  and 2v  are vectors. The sum +A B is then 

( )1 2∧ +C v v , and this is an ( )1n − -blade because 1 2+v v  is just a vector. Since 
any ( )1n − -vector can be decomposed into a sum of ( )1n − -blades, this proves 
that all ( )1n − -vectors must be ( )1n − -blades. 

4. First assume that A is a 2-blade. Then = ∧A a b for some vectors a and b, and 
clearly, 0∧ = ∧ ∧ ∧ =A A a b a b . 

 Now assume that 0∧ =A A , and suppose that A is not a 2-blade. Then A can 
be written as = ∧ +A a b B, where a and b are vectors, and B is a 2-vector such 
that 0∧ ∧ ≠a b B . That is, the basis elements of ∧a b are independent of the 
basis elements of B, and the fact that the dimensionality is at least four guar-
antees that enough independent basis vectors are available. This means that 
∧A A contains a nonzero term, which is a contradiction, so it must be the case 

that A is a 2-blade. 

5. Assume ∧ = ∨A B A B. Changing all right complements to left complements, 
we have 

 ( ) ( ) ( )( ) ( ) ( )( )gr gr gr gr1 n+ − −∧ = − ∧A B A BA B A B 

 and 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )gr gr gr gr1 1n n− −∨ = − ∨ −A A B BA B A B. 
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 The powers of 1−  in the first and second lines differ by ( ) ( )2 gr grA B , which 
has no effect because it is always even, so ∧ = ∨A B A B. The same proof ap-
plies to ∨ = ∧A B A B as well as the reverse implications. 

6. We first show that ∨ = ∨A B A B. Each component of A and B has the form 
1 2 ki i i∧ ∧ ∧e e e . In each of the antiwedge products ∨A B and ∨A B, the only 

nonzero products between components are those that have identical basis ele-
ments in A and B because for all other pairings, the complement of one would 
exclude a basis vector that is also excluded by the other. For any basis element 
C shared by A and B, we have 1∨ =C C  and 1∨ =C C , so ∨A B and ∨A B are 
both equal to the same sum of the products of coefficients of like components. 

 Now we only need to show that ∨ = ∨B A A B. By reversing the order of the 
factors, we have 

 ( ) ( )1 k n k−∨ = − ∨A B B A. 

 Changing the right complement to left complement gives us 

 ( ) ( ) ( ) ( )1 1k n k k n k− −∨ = − − ∨A B B A. 

 The total power of 1−  is always even, so the equality holds. 

7. By definition, ( ) ( )= ∨ ∨A B C A B C  . By the associativity of the antiwedge 
product, ( ) ( )∨ ∨ = ∨ ∨A B C A B C. Then 

 ( ) ( )∨ ∨ = ∧ ∨ = ∧A B C A B C A B C . 

8. The dot product between ( ), ,vx vy vzL L L  and ( ), ,mx my mzL L L  is 

 
( ) ( ) ( ) ( )

( ) ( ) .
w x x w y z z y w y y w z x x z

w z z w x y y x

a b a b a b a b a b a b a b a b
a b a b a b a b
− − + − −

+ − −  

 When multiplied out, every term cancels, so the dot product is zero, and the 
two vectors are therefore orthogonal. 

9. Direct multiplication produces the following. 



14 Answers to Exercises 

 

( ) ( ) ( )[
( ) ( ) ( ) ]

( )
( )
( )

41 42 43

23 31 12

234

314

124

x x y y z z

y z z y z x x z x y y x

y z y z z y z y y z z y

x z x z z x z x z x x z

x y x y y x y x x y y x

y z x z y x z x y x

q p q p q p
p q p q p q p q p q p q

q r p r p r q r p q p q
p r q r q r p r p q p q
q r p r p r q r p q p q
p q r p q r p q r p q

∧ ∧ = − + − + −

+ − + − + − ∧

= − + − + −

+ − + − + −

+ − + − + −

+ − + −

e e e
e e e

e
e
e

  


( )
( ) ( )

123

4 4

z y x y z y x zr p q r p q r+ −

= ∧ + ∧ + ∧ ∧ − ∧ ∧

e
p q q r r p e p q r e  

10. 4 wp∨ =e , 4 1 2 3vx vy vzL L L∨ = + +L e e e e , and 4 23 31 12x y zf f f∨ = + +f e e e e . 

11. ( )1−
∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧
a b c f g h

a b c d f g h
. 

12. ( )[ ] ( )2 1
41 2 1 2+ = + + ∧ + ⋅v v v v v v . Since 0∧ =v v  and 1⋅ =v v  (because v 

has unit length), the right side simplifies to ( )1 2+ v . 

13. ( ) ( )1
2

k kf k −
= . 

14. Let p be the point closest to the origin on the line L. Then we can write m as 
( )= ∧ + = ∧m p p v p v because p and +p v are two points on the line. We 

know that p and v are perpendicular, so 0⋅ =p v , and we can write =m pv using 
the geometric product. Division by v gives us =p m v. 

15. Let 1 2= + +A A A  and 1 2= + +B B B . The product AB consists of terms 
i jA B , where iA  and jB  have even grade and are thus composed of terms hav-

ing the form 1 2 ki i i∧ ∧ ∧e e e , where k is even. When iA  and jB  are multiplied 
together, the grade of the result is the sum of the grades of iA  and jB  less twice 
the number of basis vectors that they have in common because one vector is 
eliminated from iA , and one vector is eliminated from jB . The resulting grade 
thus always remains even, and the subalgebra is closed. 

16. The even subalgebra of the three-dimensional geometric algebra has the basis 
elements { }23 31 121, , ,± ± ± ±e e e . The two-dimensional Clifford algebra has the 
basis elements { }1 2 121, , ,± ± ± ±e e e . In the 3D case, let 23= −x e , 31= −y e , and 

12= −z e . In the 2D case, let 1=x e , 2=y e , and 12=z e . Then in both cases, we 
have 2 2 2 1x y z= = = − , =xy z, =yz x, and =zx y. This is sufficient to establish 
an isomorphism. 
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